# Iterated Logarithm log*(n)

Iterated Logarithm or Log*(n) is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.

**Applications:** It is used in analysis of algorithms (Refer Wiki for details)

## C++

`// Recursive CPP program to find value of` `// Iterated Logarithm` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `_log(` `double` `x, ` `double` `base)` `{` ` ` `return` `(` `int` `)(` `log` `(x) / ` `log` `(base));` `}` `double` `recursiveLogStar(` `double` `n, ` `double` `b)` `{` ` ` `if` `(n > 1.0)` ` ` `return` `1.0 + recursiveLogStar(_log(n, b), b);` ` ` `else` ` ` `return` `0;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 100, base = 5;` ` ` `cout << ` `"Log*("` `<< n << ` `") = "` ` ` `<< recursiveLogStar(n, base) << ` `"\n"` `;` ` ` `return` `0;` `}` |

## Java

`// Recursive Java program to` `// find value of Iterated Logarithm` `import` `java.io.*;` `class` `GFG` `{` `static` `int` `_log(` `double` `x,` ` ` `double` `base)` `{` ` ` `return` `(` `int` `)(Math.log(x) /` ` ` `Math.log(base));` `}` `static` `double` `recursiveLogStar(` `double` `n,` ` ` `double` `b)` `{` ` ` `if` `(n > ` `1.0` `)` ` ` `return` `1.0` `+` ` ` `recursiveLogStar(_log(n,` ` ` `b), b);` ` ` `else` ` ` `return` `0` `;` `}` `// Driver code` `public` `static` `void` `main (String[] args)` `{` ` ` `int` `n = ` `100` `, base = ` `5` `;` ` ` `System.out.println(` `"Log*("` `+ n + ` `") = "` `+` ` ` `recursiveLogStar(n, base));` `}` `}` `// This code is contributed by jit_t` |

## Python3

`# Recursive Python3 program to find value of` `# Iterated Logarithm` `import` `math` `def` `_log(x, base):` ` ` `return` `(` `int` `)(math.log(x) ` `/` `math.log(base))` `def` `recursiveLogStar(n, b):` ` ` `if` `(n > ` `1.0` `):` ` ` `return` `1.0` `+` `recursiveLogStar(_log(n, b), b)` ` ` `else` `:` ` ` `return` `0` `# Driver code` `if` `__name__` `=` `=` `'__main__'` `:` ` ` `n ` `=` `100` ` ` `base ` `=` `5` ` ` `print` `(` `"Log*("` `, n, ` `") = "` `, recursiveLogStar(n, base))` `# This code is contributed by` `# Sanjit_Prasad` |

## C#

`// Recursive C# program to` `// find value of Iterated Logarithm` `using` `System;` `public` `class` `GFG{` `static` `int` `_log(` `double` `x, ` `double` `baset)` `{` ` ` `return` `(` `int` `)(Math.Log(x) /` ` ` `Math.Log(baset));` `}` `static` `double` `recursiveLogStar(` `double` `n,` ` ` `double` `b)` `{` ` ` `if` `(n > 1.0)` ` ` `return` `1.0 +` ` ` `recursiveLogStar(_log(n,` ` ` `b), b);` ` ` `else` ` ` `return` `0;` `}` `// Driver code` ` ` `static` `public` `void` `Main (){` ` ` ` ` `int` `n = 100, baset = 5;` ` ` `Console.WriteLine(` `"Log*("` `+ n + ` `") = "` `+` ` ` `recursiveLogStar(n, baset));` `}` `}` `// This code is contributed by ajit.` |

## PHP

`<?php` `// Recursive PhP program to find` `// value of Iterated Logarithm` `function` `_log(` `$x` `, ` `$base` `)` `{` ` ` `return` `(int)(log(` `$x` `) / log(` `$base` `));` `}` `function` `recursiveLogStar(` `$n` `, ` `$b` `)` `{` ` ` `if` `(` `$n` `> 1.0)` ` ` `return` `1.0 +` ` ` `recursiveLogStar(_log(` `$n` `,` ` ` `$b` `), ` `$b` `);` ` ` `else` ` ` `return` `0;` `}` `// Driver code` `$n` `= 100; ` `$base` `= 5;` `echo` `"Log*("` `, ` `$n` `, ` `")"` `,` `" = "` `,` `recursiveLogStar(` `$n` `, ` `$base` `), ` `"\n"` `;` `// This code is contributed by ajit` `?>` |

## Javascript

`<script>` `// Javascript program to` `// find value of Iterated Logarithm` ` ` `function` `_log( x, base)` `{` ` ` `return` `(Math.log(x) /` ` ` `Math.log(base));` `}` ` ` `function` `recursiveLogStar(n, b)` `{` ` ` `if` `(n > 1.0)` ` ` `return` `1.0 +` ` ` `recursiveLogStar(_log(n,` ` ` `b), b);` ` ` `else` ` ` `return` `0;` `}` ` ` `// Driver code` ` ` `let n = 100, base = 5;` ` ` `document.write(` `"Log*("` `+ n + ` `") = "` `+` ` ` `recursiveLogStar(n, base));` ` ` ` ` `// This code is contributed by sanjoy_62.` `</script>` |

**Output :**

Log*(100) = 2

**Iterative Implementation : **

## C++

`// Iterative CPP function to find value of` `// Iterated Logarithm` `int` `iterativeLogStar(` `double` `n, ` `double` `b)` `{` ` ` `int` `count = 0;` ` ` `while` `(n >= 1) {` ` ` `n = _log(n, b);` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` |

## Java

`// Iterative Java function to find value of` `// Iterated Logarithm` `public` `static` `int` `iterativeLogStar(` `double` `n, ` `double` `b)` `{` ` ` `int` `count = ` `0` `;` ` ` `while` `(n >= ` `1` `) {` ` ` `n = _log(n, b);` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` `// This code is contributed by pratham76` |

## Python3

`# Iterative Python function to find value of` `# Iterated Logarithm` `def` `iterativeLogStar(n, b):` ` ` `count ` `=` `0` ` ` `while` `(n >` `=` `1` `):` ` ` `n ` `=` `_log(n, b)` ` ` `count ` `=` `count ` `+` `1` ` ` `return` `count` `# This code is contributed by` `# Sanjit_Prasad` |

## C#

`// Iterative C# function to find value of` `// Iterated Logarithm` `static` `int` `iterativeLogStar(` `double` `n, ` `double` `b)` `{` ` ` `int` `count = 0;` ` ` `while` `(n >= 1)` ` ` `{` ` ` `n = _log(n, b);` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` `// This code is contributed by rutvik_56` |

This article is contributed by **Abhishek rajput**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.